

RECALIBRATION DUE DATE:

February 3, 2022

Pertificate of alibration

		Calibration	Certificati	on Informat	ion	and a second			
Eobruory 2	2021					293	°K		
	, 2021	Roots	meter synt.	4. 430320					
Jim Lisch					Pa:	/50.0	mm Hg		
Model #:	TE-5025A	Calil	orator S/N:	3880					
 1			A37-1	ATTING	4.0	A11	1		
				1000 0 100 10	1				
				and the second se					
							1		
						and the second	1		
	9	10	1	0.7220	12.8	8.00			
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$			
(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)			
1.0002	0.6874	1.41	74	0.9957	0.6844				
0.9959	0.9688	2.004	44			and the second se			
0.9937	1.0825	2.24	10	and the second sec					
0.9927		the second s							
0.9873	1.3675			0.9829	1.3614				
	m=			~ ~					
QSTD				QA					
	r=	1.000	000		r=	1.00000	l		
			Calculatio	ns					
Vstd=	Vstd= $\Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta)$			Va=					
Qstd=	Vstd/∆Time			Qa=					
		For subsequ	ent flow ra	w rate calculations:					
Qstd=	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$				1/m ((√∆H	l(Ta/Pa))-b)			
Standard	Conditions								
					RECA	LIBRATION			
	A DESCRIPTION OF TAXABLE PARTY OF TAXABLE PARTY.						on nor 1000		
		(120)							
				the second corrected sourcements					
	cooure (mm			th th	e Atmosphe	ere, 9.2.17, page	50		
		1							
	Jim Tisch Model #: Run 1 2 3 4 5 Vstd (m3) 1.0002 0.9959 0.9957 0.9957 0.9957 0.9957 0.9927 0.9957 0.9977 0.9873 0.9957 0.9873 0.9957 0	February 3, 2021 Jim Tisch Model #: TE-5025A Quart Vol. Init Run (m3) 1 1 2 3 3 5 4 7 5 9 Vstd Qstd (m3) (x-axis) 1.0002 0.6874 0.9959 0.9688 0.9937 1.0825 0.9927 1.1345 0.9973 1.3675 m= QSTD b= Vstd= ΔVol((Pa-ΔP)) Qstd= Vstd/ΔTime Qstd= 1/m (($\sqrt{\Delta H})$ Standard Conditions 298.15 °K 760 mm Hg Key Cor manometer reading (i eter manometer reading (i eter manometer reading (i bsolute temperature (°K) %	Calibration February 3, 2021 Roots Jim Tisch Model #: TE-5025A Calil Run Vol. Init Vol. Final (m3) 1 1 2 3 4 3 5 6 4 7 8 5 9 10 10 10 10 Vstd Qstd $\sqrt{\Delta H} \left(\frac{Pa}{Pstol} \right)$ $\sqrt{Patol} \left(\frac{Pa}{Pstol} \right)$ $\sqrt{244}$ $\sqrt{937}$ 1.0002 0.6874 1.411 0.9959 0.9688 2.000 0.9937 1.0825 2.244 0.9927 1.1345 2.355 0.9873 1.3675 2.833 m= 2.084 QSTD b= -0.013 r= 1.0002 b= -0.013 r= 1.0002 0.9873 1.3675 2.833 D D = -0.013 r= 1.0002 D E -0.013 r= 1.0002 0.9873 1.3675 2.833	Calibration Certification February 3, 2021 Rootsmeter S/N: Jim Tisch Model #: TE-5025A Calibrator S/N: Display= Data Tabula Vstd Qstd QAH($\frac{Pa}{Pstd})(\frac{Tstd}{Ta})$ Vstd Qstd= Qstd= Qstd= Calculatio<	Calibration Certification Informat February 3, 2021 Rootsmeter S/N: 438320 Jim Tisch Model #: TE-5025A Calibrator S/N: 3880 Image: Colspan="2">Model #: TE-5025A Calibrator S/N: 3880 Image: Colspan="2">Image: Colspan="2">Calibrator S/N: 3880 Image: Colspan="2">Te-5025A Calibrator S/N: 3880 Image: Colspan="2">Image: Colspan="2">Model #: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspa="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Co	Calibration Certification Information February 3, 2021 Rootsmeter S/N: 438320 Ta: Jim Tisch Pa: Model #: TE-5025A Calibrator S/N: 3880 Run Vol. Init (m3) Vol. Final (m3) AVol. ATime (min) AP Run Vol. Init (m3) Vol. Final (m3) AVol. ATime (m3) AP Data Tabulation V Val Qa (x-axis) Val Qa Calculations Val	Calibration Certification Information February 3, 2021 Rootsmeter S/N: 438320 Ta: 293 Jim Tisch Pa: 750.6 Model #: TE-5025A Calibrator S/N: 3880 Im Tisch Data Tabulation Im Tisch OP Im Tisch Nodel #: TE-5025A Calibrator S/N: 3880 Im Tisch OP Im Tisch Im Tisch OP Im Tisch Im Tisch Pa: 750.6 Model #: TE-5025A Calibrator S/N: 3880 Im Tisch OP Im Tisch Im Tisch OP Im Tisch OP Im Tisch OP Im Tisch Im Tisch OP Im Tisch OP Im Tisch OP Im Tisch OP Im Tisch Im Tisch OP Im Tisch OP Im Tisch OP Im Tisch OP Im Tis		

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	28-Oct-21
Equipment no.	:	HVS002	Calbration Due Date	:	28-Dec-21

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient C	Condition			
Temperature, T _a		298.	7	Kelvin	Pressure, P	3	1	018 mmHg
Orifice Transfer Standard Information								
Equipment No.		3880		Slope, m _c	2.0843	37	Intercept, bc	-0.01508
Last Calibration Date		3-Feb-2	1		(Hx	P _a / 10)13.3 x 298 /	(T _a) ^{1/2}
Next Calibration Date		3-Feb-22	2		=	m _c	$x Q_{std} + b_c$	
				Calibratio	on of TSP			
Calibration	Mar	nometer R	eading	G	Q _{std}	Conti	nuous Flow	IC
Point	Н (H (inches of water)		(m ³	/ min.)	Red	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis
1	1.3	1.3	2.6	0.	7817		28	28.0306
2	1.9	1.9	3.8	0.9	9435		32	32.0349
3	3.0	3.0	6.0	1.	1837		42	42.0459
4	3.9	3.9	7.8	1.3	3486		46	46.0502
5	5.0	5.0	10.0	1.	5260		52	52.0568
By Linear Regression of	Y on X							
	Slope, m	=	32.9	282	Inte	ercept, b	=1.	9558
Correlation Co	pefficient*	=	0.99	969				
Calibration	Accepted	=	Yes/	\ 0**				

* if Correlation Coefficient < 0.990, check and recalibration again.

Garry Yu

28-Oct-21

** Delete as appropriate.

Remarks : _____

:

:

Calibrated	by
------------	----

Checked by

Date

James Chu

:

:

28-Oct-21

Date

Calibration Certificate

Certificate Number 2021010517 Customer:

Lam Geotechnics Ltd

,

Model Number Serial Number Test Results Initial Condition	LxT SE 000506 Pass Inopera	2	Procedure Number Technician Calibration Date Calibration Due	Ron H 26 Au	g 2021	
Description	Class 1	Expert LxT Sound Level Meter are Revision: 2.404	Temperature Humidity Static Pressure	23.29 51.9 86.13	%RH	± 0.25 °C ± 2.0 %RH ± 0.13 kPa
Evaluation Metho	od	<i>Tested with:</i> PCB 377B02, S/N 173734 Larson Davis CAL291, S/N 0108 Larson Davis CAL200, S/N 9079 Larson Davis PRMLxT1L, S/N 042836	Dat	a report	ed in di	B re 20 μPa.
Compliance Stan	ndards	Compliant to Manufacturer Specification Calibration Certificate from procedure D IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1		1 ss 1	n comb	ined with

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, I770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to 1/2" adaptor is used with the preamplifier.

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-8-26T07:51:18

Page 1 of 3

D0001.8406 Rev E

Certificate Number 2021010517

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

Standards Used						
Cal Date	Cal Due	Cal Standard				
2020-09-18	2021-09-18	001250				
2021-02-04	2022-08-04	006767				
2021-07-21	2022-07-21	007027				
2021-03-02	2022-03-02	007182				
2021-03-03	2022-03-03	007185				
2021-04-13	2022-04-13	007635				
2020-10-06	2021-10-06	PCB0004783				
	Cal Date 2020-09-18 2021-02-04 2021-07-21 2021-03-02 2021-03-03 2021-04-13	Cal DateCal Due2020-09-182021-09-182021-02-042022-08-042021-07-212022-07-212021-03-022022-03-022021-03-032022-03-032021-04-132022-04-13				

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
1000 Hz	114.00	113.80	114.20	0.14	Pass
As Received Level: 116.07					

Adjusted Level: 114.00

-- End of measurement results--

Loaded Circuit Sensitivity

Measurement	Test Result [dB re 1 V / Pa]	Lower Limit [dB re 1 V / Pa]	Upper Limit [dB re 1 V / Pa]	Expanded Uncertainty [dB]	Result
1000 Hz	-27.69	-29.61	-26.24	0.14	Pass
	17	nd of magazinemant wa	14.		

-- End of measurement results--

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result	
125	-0.20	-0.20	-1.20	0.80	0.23	Pass	
1000	0.13	0.00	-0.70	0.70	0.23	Pass	
8000	-2.49	-3.00	-5.50	-1.50	0.32	Pass	

-- End of measurement results---

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-8-26T07:51:18

Page 2 of 3

D0001.8406 Rev E

Certificate Number 2021010517

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1

Measurement	Test Result [dB]
A-weighted	40.32

- End of measurement results--

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-8-26T07:51:18

Page 3 of 3

D0001.8406 Rev E

CERTIFICATE OF CALIBRATION

Certificate No.:	21CA0120 03		Page:	1	of	2
Item tested			andrea 1986			
Description:	Acoustical Calibrat	tor (Class 1)				
Manufacturer:	Honglim Co., Ltd.					
Type/Model No.:	HLES-02					
Serial/Equipment No.:	2019612870					
Adaptors used:	÷					
Item submitted by						
Curstomer:	Lam Environmenta	al Services Limited.				
Address of Customer:	-					
Request No .:	-					
Date of receipt:	20-Jan-2021					
Date of test:	24-Jan-2021					
Date of test: Reference equipment		oration				
		oration Serial No.	Expiry Date:		Traceat	ole to:
Reference equipment	used in the calib		11-May-2021		SCL	
Reference equipment Description: Lab standard microphone	used in the calib Model:	Serial No.	11-May-2021 03-Jun-2021		SCL CEPREI	ĺ
Reference equipment Description: Lab standard microphone Preamplifier	used in the calib Model: B&K 4180 B&K 2673 B&K 2610	Serial No. 2341427 2743150 2346941	11-May-2021 03-Jun-2021 03-Jun-2021		SCL CEPREI CEPREI	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360	Serial No. 2341427 2743150 2346941 33873	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021		SCL CEPRE CEPRE CEPRE	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2341427 2743150 2346941 33873 US36087050	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021		SCL CEPREI CEPREI CEPREI CEPREI	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360	Serial No. 2341427 2743150 2346941 33873 US36087050 GB41300350	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021 18-May-2021		SCL CEPRE CEPRE CEPRE CEPRE	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2341427 2743150 2346941 33873 US36087050	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021		SCL CEPREI CEPREI CEPREI CEPREI	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2743150 2346941 33873 US36087050 GB41300350	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021 18-May-2021		SCL CEPRE CEPRE CEPRE CEPRE	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter Ambient conditions	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2743150 2346941 33873 US36087050 GB41300350	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021 18-May-2021		SCL CEPRE CEPRE CEPRE CEPRE	
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2341427 2743150 2346941 33873 US36087050 GB41300350	11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021 18-May-2021		SCL CEPRE CEPRE CEPRE CEPRE	

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.


Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date: 25-Jan-2021

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration ar carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Company Chop:

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵滴水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

Page: 2 of 2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Output level in dB re 20 μP
Shown	Level Setting	Sound Pressure Level	Estimated Expanded
Hz	dB	dB	Uncertainty
1000	94.00	93.77	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

21CA0120 03

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

0.005 dB

At 1000 Hz	STF = 0.013 dB
Estimated	

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 999.3 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2	

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.4 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	/
Calibrated by:		Checked by:	the
Date:	/ Fung Chi Yip/) 24-Jan-2021	Date:	Feng Junqi 25-Jan-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory

Calibration Certificate

Certificate Number 2020014198 Customer: Lam Geotechnics Ltd

Model Number Serial Number Test Results Initial Condition	LxT SE 000630 Pass As Man		Procedure Number Technician Calibration Date Calibration Due		arris c 2020	
Description	Class 1	Expert LxT Sound Level Meter are Revision: 2.404	Temperature Humidity Static Pressure	23.25 51.6 85.71	%RH	± 0.25 °C ± 2.0 %RH ± 0.13 kPa
Evaluation Metho	od	<i>Tested with:</i> Larson Davis PRMLxT1L. S/N 070008 PCB 377B02. S/N 325638 Larson Davis CAL200. S/N 9079 Larson Davis CAL291. S/N 0108	Dat	a report	ed in di	B re 20 μPa.
Compliance Stan	dards	Compliant to Manufacturer Specification Calibration Certificate from procedure De IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1	-	1 ss 1	n comb	ined with

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, I770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

Certificate Number 2020014198

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to 1/2" adaptor is used with the preamplifier.

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used	1	
Description	Cal Date	Cal Due	Cal Standard
Larson Davis CAL291 Residual Intensity Calibrator	2020-09-18	2021-09-18	001250
Hart Scientific 2626-S Humidity/Temperature Sensor	2020-05-12	2021-05-12	006943
Larson Davis CAL200 Acoustic Calibrator	2020-07-21	2021-07-21	007027
Larson Davis Model 831	2020-03-02	2021-03-02	007182
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	2020-03-05	2021-03-05	007185
SRS DS360 Ultra Low Distortion Generator	2020-04-14	2021-04-14	007635
Larson Davis 1/2" Preamplifier for Model 831 Type 1	2020-10-06	2021-10-06	PCB0004783

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
1000 Hz	114.01	113.80	114.20	0.14	Pass

Loaded Circuit Sensitivity

Measurement	Test Result [dB re 1 V / Pa]	Lower Limit [dB re 1 V / Pa]	Upper Limit [dB re 1 V / Pa]	Expanded Uncertainty [dB]	Result
1000 Hz	-27.74	-29.61	-26.24	0.14	Pass

-- End of measurement results--

Certificate Number 2020014198

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
125	-0.18	-0.20	-1.20	0.80	0.23	Pass
1000	0.16	0.00	-0.70	0.70	0.23	Pass
8000	-3.19	-3.00	-5.50	-1.50	0.32	Pass

-- End of measurement results--

Self-generated Noise

Measured according to IEC 6167	72-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1	
Measurement	Test Result [dB]	
A-weighted	40.20	

-- End of measurement results--

-- End of Report--

Signatory: <u>Ron Harris</u>

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

CERTIFICATE OF CALIBRATION

Certificate No.:	21CA0222 03		Page	1 of 2	
Item tested					
Description:	Sound Level Mete	r (Class 1)	Microphone	Preamp	
Manufacturer:	B & K	· /	B&K	B&K	
Type/Model No.:	2250		4189	ZC0032	
Serial/Equipment No.:	2701778		2755097	19223	
Adaptors used:	-		-	-	
Item submitted by					
Customer Name:	Lam Geotechnics	Limited.			
Address of Customer:	-				
Request No.:	-				
Date of receipt:	22-Feb-2021				
Date of test:	23-Feb-2021				
Reference equipment	used in the calib	ration			
Description:	Model:	Serial No.	Expiry Date:	Traceable to:	
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2021	CIGISMEC	
Signal generator	DS 360	33873	19-May-2021	CEPREI	
Ambient conditions					
Temperature:	22 ± 1 °C				
Relative humidity:	55 ± 10 %				
Air pressure:	1000 ± 5 hPa				
Test specifications					

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of <u>+</u>20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

24-Feb-2021 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0222 03

Page

2 of 2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	А	Pass	0.3	
3	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass		
requerey weightings	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
inne neightings	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse		0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I		Pass	0.3	
Time weighting f	Single burst 5 ms at 2000 Hz	Pass	0.3	
.	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End Calibrated by: Checked by: Fung Chi Yi Feng una Date: 23-Feb-2021 Date: 24-Feb-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

Test Data for So	und Level M	eter			Page 1 of 5
Sound level me	eter type:	2250	Serial No.	2701778	Date 23-Feb-2021
Microphone	type:	4189	Serial No.	2755097	
Preamp	type:	ZC0032	Serial No.	19223	Report: 21CA0222 03

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	12.6	dB
Noise level in C weighting	13.8	dB
Noise level in Lin	20.0	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	i level	Tolerance	Devia	Deviation	
	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
124.0	124.0	124.0	0.7	0.0	0.0	
129.0	129.0	129.0	0.7	0.0	0.0	
134.0	134.0	134.0	0.7	0.0	0.0	
135.0	135.0	135.0	0.7	0.0	0.0	
136.0	136.0	136.0	0.7	0.0	0.0	
137.0	137.0	137.0	0.7	0.0	0.0	
138.0	138.0	138.0	0.7	0.0	0.0	
139.0	139.0	139.0	0.7	0.0	0.0	
140.0	140.0	140.0	0.7	0.0	0.0	
89.0	89.0	89.0	0.7	0.0	0.0	
84.0	84.0	84.0	0.7	0.0	0.0	
79.0	79.0	79.0	0.7	0.0	0.0	
74.0	74.0	74.0	0.7	0.0	0.0	
69.0	69.0	69.0	0.7	0.0	0.0	
64.0	64.0	64.0	0.7	0.0	0.0	
59.0	59.0	59.0	0.7	0.0	0.0	
54.0	54.0	54.0	0.7	0.0	0.0	
49.0	49.0	49.0	0.7	0.0	0.0	
44.0	44.0	44.0	0.7	0.0	0.0	
39.0	39.0	39.0	0.7	0.0	0.0	

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

Page 2 of 5

Test Data for Sound Level Meter

Sound level me	eter type:	2250	S	Serial No.	2701778	Date	e 23-Feb-	2021
Microphone	type:	4189		Serial No.	2755097			
Preamp	type:	ZC0032		Serial No.	19223	Rep	ort: 21CA022	22 03
34.0		34.0	34.0	0.7		0.0	0.0	
33.0		33.0	33.0	0.7		0.0	0.0	
32.0		32.0	32.0	0.7		0.0	0.0	
31.0		31.0	31.0	0.7		0.0	0.0	
30.0		30.0	30.0	0.7		0.0	0.0	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	30.0	30.0	0.7	0.0
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	N/A	54.6	1.5	1.5	0.0
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0	0.0
501.2	94.0	90.8	0.0	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerance(dB)		Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	N/A	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Page 3 of 5

Test Data for Sound Level Meter

Sound level me	eter type:	2250		Serial No.	270	1778	Date	23-Feb-2021
Microphone	type:	4189		Serial No.		5097		
Preamp	type:	ZC0032		Serial No.	192	23	Report:	21CA0222 03
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	-0.3	87.5	3.0	6.0	0.0	1

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	N/A	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	94.0	1.0	1.0	0.1
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

*Deviation = Actual level - (Expected level + Correction of electrical response) The correction of electrical response is specified in the Table A.2 of technical documentation of BE 1712-21. The maximum expanded uncertainty of correction of electrical response is 0.29 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

	(
Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us

(c)Soils Materials Eng. Co., Ltd.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for So	und Level M	eter			Page 4 of	5
Sound level me	eter type:	2250	Serial No.	2701778	Date 23-Feb-2021	
Microphone	type:	4189	Serial No.	2755097		
Preamp	type:	ZC0032	Serial No.	19223	Report: 21CA0222 03	

rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting C, set the generator signal to single, Lcpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.6	2.0	0.6

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.6	2.0	0.6

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency: 2000 Hz Amplitude: 2 dB below the upper limit of the primary indicator range. Burst repetition frequency: 40 Hz Tone burst signal: 11 cycles of a sine wave of frequency 2000 Hz. (Set to INT) Ref. Level Expected level Tone burst signal Tolerance Deviation Time wighting dB dB indication(dB) +/- dB dB Slow 118.0+6.6 118.0 117.9 0.5 -0.1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on	the reference range	(Set the SLM to LAImax)
Test frequency:	2000 Hz	
Amplitude:	The upper limit of the	e primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	t indication	Tolerance	Deviation	
dB	Expected (dB)	Actual (dB)	+/- dB	dB	
120.0	111.2	111.2	2.0	0.0	

Repeated at 100 Hz

Ref. Level	Repeated bu	irst indication	Tolerance	Deviation	
dB	Expected (dB)	Actual (dB)	+/- dB	dB	
120.0	117.3	117.2	1.0	-0.1	

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:	4000 Hz
Duration of tone burst:	1 mc

Duration of tone burst.	11115					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ.

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

	<u> </u>		eend No.	10220	Nepolt. 210A0222.03
Preamp	type:	ZC0032	Serial No.	19223	Report: 21CA0222 03
Microphone	type:	4189	Serial No.	2755097	
Sound level me	eter type:	2250	Serial No.	2701778	Date 23-Feb-2021
Test Data for Sou		eter			Page 5 of

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

 The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

 Test frequency:
 4000 Hz

 Integration time:
 10 sec

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	110.0	80.0	80.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequer Amplitude: Burst repetit Tone burst s	ion frequency:	2000 Hz 2 dB below the upper limit of the primary indicator range. 40 Hz 11 cycles of a sine wave of frequency 2000 Hz.				
Level	Level reduced by		Difference	Tolerance	Deviation	
at overload (dB)	1 dB	3 dB	dB	dB	dB	
134.9	133.9	130.9	3.0	1.0	0.0	

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz Integration time: 10 sec

Single burst		1 msec			
Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
141.6	140.6	100.6	100.6	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	Tolerance (dB)		
Hz	dB	Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	78.0	1.0	1.0	0.1	
8000	92.9	91.9	1.5	3.0	-1.0	

-----END------

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵涌永基路22-24號好爸爸創科大廈

官 裕 痢 疗 奕 佃 太 墨 眸 2 2 - 2 4 號 好 色 色 創 件 八 度 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	21CA0429 02		Page	1 of 2
Item tested				
Description:	Sound Level Mete	r (Type 1)	Microphone	Preamp
Manufacturer:	В&К		B&K	B&K
Type/Model No.:	2250-L		4950	ZC0032
Serial/Equipment No.:	2722311		2698703	13321
Adaptors used:	-		-	-
Item submitted by				
Customer Name:	Lam Geotechnics	Ltd.		
Address of Customer:				
Request No.:	-			
Date of receipt:	29-Apr-2021			
Date of test:	30-Apr-2021			
Reference equipment	used in the calib	ration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2021	CIGISMEC
Signal generator	DS 360	61227	19-May-2021	CEPREI
Ambient conditions				
Temperature:	22 ± 1 °C			
Relative humidity:	55 ± 10 %			
Air pressure:	1005 ± 5 hPa			
Test specifications				

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of <u>+</u>20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

ter Feng Jung

03-May-2021 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0429 02

Page

of

2

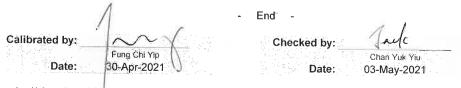
2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Solf gonorotad pains	A	Deer	0.0	
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

Test Data for Sound Level M	leter			Page 1 of 5
Sound level meter type:	2250-L	Serial No.	2722311	Date 30-Apr-2021
Microphone type: Preamp type:	4950 ZC0032	Serial No. Serial No.	2698703 13321	Report: 21CA0429 02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	13.4	dB
Noise level in C weighting	16.5	dB
Noise level in Lin	23.2	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Devia	Deviation	
	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
124.0	124.0	124.0	0.7	0.0	0.0	
129.0	129.0	129.0	0.7	0.0	0.0	
134.0	134.0	134.0	0.7	0.0	0.0	
135.0	135.0	135.0	0.7	0.0	0.0	
136.0	136.0	136.0	0.7	0.0	0.0	
137.0	137.0	137.0	0.7	0.0	0.0	
138.0	138.0	138.0	0.7	0.0	0.0	
139.0	139.0	139.0	0.7	0.0	0.0	
140.0	140.0	140.0	0.7	0.0	0.0	
89.0	89.0	89.0	0.7	0.0	0.0	
84.0	84.0	84.0	0.7	0.0	0.0	
79.0	79.0	79.0	0.7	0.0	0.0	
74.0	74.0	74.0	0.7	0.0	0.0	
69.0	69.0	69.0	0.7	0.0	0.0	
64.0	64.0	64.0	0.7	0.0	0.0	
59.0	59.0	59.0	0.7	0.0	0.0	
54.0	54.0	54.0	0.7	0.0	0.0	
49.0	49.0	49.0	0.7	0.0	0.0	
44.0	43.9	43.9	0.7	-0.1	-0.1	
39.0	39.0	39.0	0.7	0.0	0.0	

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Page 2 of 5

Test Data for Sound Level Meter

Sound level meter	type:	2250-L		Serial No.	2722311	Date	e 30-Apr-2	2021
_ '	type: type:	4950 ZC0032		Serial No. Serial No.	2698703 13321		ort: 21CA042	29 02
34.0		34.0	34.0	0.7		0.0	0.0	
33.0		33.0	33.0	0.7		0.0	0.0	
32.0		32.0	32.0	0.7		0.0	0.0	
31.0		31.0	31.0	0.7		0.0	0.0	
30.0		30.0	30.0	0.7		0.0	0.0	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	30.0	30.0	0.7	0.0
20 140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	N/A	54.5	1.5	1.5	-0.1
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0	0.0
501.2	94.0	90.8	0.0	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	N/A	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

SMECLab

Page 3 of 5

Test Data for Sound Level Meter

Sound level me	eter type:	2250-L		Serial No.	272	2311	Date	30-Apr-2021
Microphone Preamp	type: type:	4950 ZC0032		Serial No. Serial No.	269 133	8703 21	Report:	21CA0429 02
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	-0.3	87.5	3.0	6.0	0.0	

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	N/A	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	93.9	1.0	1.0	0.0
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

*Deviation = Actual level - (Expected level + Correction of electrical response)

The correction of electrical response is specified in the Table A.2 of technical documentation of BE 1853-11. The maximum expanded uncertainty of correction of electrical response is 0.3 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A. Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
136.0	135.0	135.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
136.0	131.9	131.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the

(c)Soils Materials Eng. Co., Ltd.

試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter Page 4 of 5 Sound level meter type: 2250-L Serial No. 2722311 Date 30-Apr-2021 Microphone 4950 Serial No. type: 2698703 Preamp ZC0032 Serial No. type: 13321 Report: 21CA0429 02

10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting C, set the generator signal to single | cpeak)

e e contre percentare e c	(rreighting o, oor no goi	ionator orginal to on	igio, copourty	
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
139.0	139.0	137.5	2.0	-1.5
Negative polarities:				<i>M</i>
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
	u D	UD UD	1 012	uD

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency Amplitude: Burst repetitior Tone burst sig	n frequency:	40 Hz	per limit of the primar	-	to INT)
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	118.0+6.6	118.0	117.9	0.5	-0.1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on	the reference range	(Set the SLM to LAImax)
Test frequency:	2000 Hz	,
Amplitude:	The upper limit of the	e primary indicator range.
ngle sinusoidal burst of duratior	n 5 ms:	

Sin

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
140.0	131.2	131.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated bu	Repeated burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
140.0	137.3	137.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:	4000 Hz
Duration of tone burst	1 ms

Duration of tone burst.	1 ms					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter						
Sound level me	eter type:	2250-L	Serial No.	2722311	Date	30-Apr-2021
Microphone Preamp	type: type:	4950 ZC0032	Serial No. Serial No.	2698703 13321	Deper	H 010 A 0400 00
	type.	200032	Senarivo.	13321	керог	t: 21CA0429 02

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range						
Test frequency:	4000 Hz					
Integration time:	10 sec					

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	110.0	80.0	80.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequer	ncy:	2000 Hz					
Amplitude: 2 dB below the upper limit of the primary indicator r			ande.				
Burst repetit	ion frequency:	/: 40 Hz					
Tone burst signal:		11 cycles of a sine wave of frequency 2000 Hz.					
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation		
at overload (dB)	1 dB	3 dB	dB	dB	dB		
135.5	134.5	131.5	3.0	1.0	0.0		

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz

Integration time: Single burst duration:		10 sec 1 msec					
Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation		
at overload (dB)	1 dB	dB	dB	dB	dB		
142.3	141.3	101.3	101.3	2.2	0.0		

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolera	Deviation		
Hz dB		Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	78.0	1.0	1.0	0.1	
8000	92.9	93.6	1.5	3.0	0.7	

-----END------

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

網址/Website: www.bksv.cn / www.bksv.com

HBK 校正實驗室

HBK Calibration Laboratory

校正證書

CALIBRATION CERTIFICATE

證書編號(Certificate No.):HBKT-20210022 第 1 頁 , 共 17 頁)	(Page1 of 17)			
委託單位: LAM Geotechnics Limited				
Customer:				
地址: 11/F Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong China	S.A.R of			
Address:	÷			
儀器名稱: Nexus 調適放大器				
Equipment:				
型號規格: 2693-0S4				
Model/Type:				
製造商: Bruel & Kjaer				
Manufacture:				
機身號: 2099340	5			
Serial No.				
接收日期: 2021-06-11 校正日期: 2021-06-22				
Date of Recept Date of Cal.				
批准日期: 2021-06-24				
Date of Approve				
主管 Approved by <u>載</u> , ,				
校正 Calibrated by				
台灣思百吉股份有限公司 Bruel & Kjaer Division of Spectris Taiwan Limited				
Bruel & Kjaer Bruel & Kjaer 13F-1, No. 128, Sec. 3, Min Sheng F. Road, Taipei City	Bruel & Kjaer 13F-1, No.128, Sec.3, Min Sheng E. Road, Taipei City 105, Taiwan, R.			
地址/Addr:台北市民生東路三段128號13樓之一 13F-1, No.128, Sec.3, Min Sheng E. Road, Taiper City 電話/Te1: +886 2 25462988 傳真/Fax: +886 2 25462989	,, xurrun, A.			

4

á,

HBK 校正實驗室

HBK Calibration Laboratory

校正說明

Directions of Calibration

證書編號(Certificate No.): HBKT-20210022

第2頁,共17頁(Page2 of 17)

1 本實驗室所出具的數據均可溯源到國家計量基準和國際單位制(SI)。

All data issued by this calibration laboratory are traceable to national primary standards and the International System of Unit(SI).

2 本次測量結果僅與被測件有關。

The measurement results are only related to the Unit Under Test.

3 本次校正的技術依據(Reference documents for the calibration)

本次校準依據 P_2690_A12 Bruel & Kjaer NEXUS 2690 麥克風输入型調適放大器校正程序 进行。 The calibration has been performed in accordance with P_2690_A12 Calibration Procedure for Nexus Range of conditioning Amplifiers Microphone Input.

4 本次校正所使用的主要測量標準 (Main measurement standards used during the calibration)

設備名稱/型號	機身編號	不確定度或準確度等級 或最大允許誤差	溯源至/證書編號	有效期至
Equipment/Model	Serial No.	Uncertainty or Accuracy Class or MPE	Traceable to/ Certificate No.	Due Date
Multimeter/ HP/3458A	2823A13040	AC Voltage $U_{\rm rel}$ (0.001% \sim 0.016%), k =2 DC Voltage $U_{\rm rel}$ (0.002% \sim 0.225%), k =2	財團法人台灣電子 檢驗中心/21-01- BAC-129-02L	2022-01-10

5 本次校正中主要校正參數的不確定度分別是(The uncertainty of main measurement parameter): 詳見校正結果頁。Shown in the calibration result page.

6 校正地點(Place of the calibration)

HBK校準實驗室(臺灣)

7 校正環境條件(Environmental condition during the calibration)

溫度(Temperature)	23.2 °C	相對溫度(Relative Humidity)	60.9	%
-----------------	---------	-------------------------	------	---

4

校正結果 (續頁)

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 3 页, 共 17 页 (Page 3 of 17)

Channel Type: DELTATRON ZX 2693 Channel No: 1

All measurements made non floating on input and output. Transducer sensitivity : 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used. Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level		یوچ وی وچ چھ حد حفاظ گاگا			
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0997	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3154	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9976	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1546	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9860	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5712	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.6039	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.9737	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	998.0384	1.1514

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第4页, 共17页 (Page 4 of 17)

Lowpass filters: The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV) Nexus: Sens. 1 V/ms-2 (0 dB Gain) (LP 100 k results not valid with WH 3219 option)

Parameter	Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting Frequency					
LP 0.1k HP 1 20 Hz	%	-1.14	1.16	-0.30	0.12
LP 0.1k HP 1 100 Hz	%	-14.89	-6.67	-11.02	0.42
LP 1 k HP 10 200 Hz	%	-1.14	1.16	-0.31	0.12
LP 1 k HP 10 1000 Hz	%	-14.89	-6.67	-10.99	0.42
LP 3 k HP 10 600 Hz	%	-1.14	1.16	-0.29	0.12
LP 3 k HP 10 3000 Hz	%	-14.89	-6.67	-10.72	0.42
LP 10 k HP 10 2000 Hz	%	-1.14	1.16	-0.39	0.12
LP 10 k HP 10 10000 Hz	%	-14.89	-6.67	-11.10	0.42
LP 22.4k HP 10 4480 Hz	%	-1.14	1.16	-0.44	0.12
LP 22.4k HP 10 22400 Hz	%	-14.89	-6.67	-11.32	0.42
LP 30 k HP 10 6000 Hz	%	-1.14	1.16	-0.34	0.12
LP 30 k HP 10 30000 Hz	%	14.89	-6.67	-10.35	0.42
LP 100 k HP 10 20000 Hz	%	-1.14	1.16	-0.17	0.12
LP 100 k HP 10 60000 Hz	%	-4.50	4.71	1.33	0.47
LP 100 k HP 10 100000 Hz	%	-18.72	-2.28	-12.74	0.62

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

]	Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
•	Nexus setting	Frequency					
	HP 0.1	0.1 Hz	%	-14.89	-6.67	-2.26	*
	HP 0.1	0.5 Hz	%	-1.14	1.16	-1.11	*
	HP 1	1.0 Hz	%	-14.89	-6.67	-10.09	*
	HP 1	5.0 Hz	%	-1.14	1.16	-0.60	*
	HP 10	10.0 Hz	%	-14.89	-6.67	-10.62	0.42
	HP 10	50.0 Hz	%	-1.14	1.16	-0.52	0.12

注: 未经本实验室批准,不得部份复制此校正证书。 Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 5 页, 共 17 页 (Page 5 of 17)

Inherent noise: The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz Input shorted. Output bandwidth limited with external A filter.

Parameter	Unit	Lower Limit	Upper Limit		Calibration Uncertainty
A weighted	uV		2.00	1.71	*

Reference Generator:

Measure output level from internal generator.

Parameter	Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

		Upper	Measured	Calibration
Parameter	Unit	Limit	Value	Uncertainty
2. Harmonic	%	0.0030	0.0018	*
3. Harmonic	%	0.0030	0.0010	*

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 6 页, 共 17 页 (Page 6 of 17)

Channel Type:DELTATRON ZX 2693Channel No:2

All measurements made non floating on input and output. Transducer sensitivity : 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used. Nexus: HP 10Hz, LP 100kHz Output bandwidth limited with external 22.4 kHz LP filter.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level					
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0998	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3156	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9980	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1559	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9868	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5751	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.6129	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.9994	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	997.9563	1.1514

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第7页, 共17页 (Page 7 of 17)

Lowpass filters: The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV) Nexus: Sens. 1 V/ms-2 (0 dB Gain) (LP 100 k results not valid with WH 3219 option)

Parameter	Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting Frequency					
LP 0.1k HP 1 20 Hz	%	-1.14	1.16	-0.27	0.12
LP 0.1k HP 1 100 Hz	%	-14.89	-6.67	-11.00	0.42
LP 1 k HP 10 200 Hz	%	-1.14	1.16	-0.27	0.12
LP 1 k HP 10 1000 Hz	%	-14.89	-6.67	-11.08	0.42
LP 3 k HP 10 600 Hz	%	-1.14	1.16	-0.26	0.12
LP 3 k HP 10 3000 Hz	%	-14.89	-6.67	-10.74	0.42
LP 10 k HP 10 2000 Hz	%	-1.14	1.16	-0.35	0.12
LP 10 k HP 10 10000 Hz	%	-14.89	-6.67	-11.39	0.42
LP 22.4k HP 10 4480 Hz	%	-1.14	1.16	-0.38	0.12
LP 22.4k HP 10 22400 Hz	%	-14.89	-6.6 7	-11.41	0.42
LP 30 k HP 10 6000 Hz	%	-1.14	1.16	-0.31	0.12
LP 30 k HP 10 30000 Hz	%	-14.89	-6.67	-10.58	0.42
LP 100 k HP 10 20000 Hz	%	-1.14	1.16	-0.11	0.12
LP 100 k HP 10 60000 Hz	%	-4.50	4.71	1.37	0.47
LP 100 k HP 10 100000 Hz	%	-18.72	-2.28	-12.97	0.62

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV) Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Frequency	ی ویو و و و و وی و می و ماه م	وی بچ رو اه مر مر مر خان مرغا خان گا کا کا کا			
HP 0.1	0.1 Hz	%	-14.89	-6.67	-2.90	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.16	*
HP 1	1.0 Hz	%	-14.89	-6.67	-10.22	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.58	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.58	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.49	0.12

注: 未经本实验室批准,不得部份复制此校正证书。 Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第8页, 共17页 (Page 8 of 17)

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz Input shorted.

Output bandwidth limited with external A filter.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
A weighted	uV		2.00	1.84	*

Reference Generator:

Measure output level from internal generator.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
		مند بعائد الذي التي التي من التي التي ا لي ال			
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	*

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

Parameter	Unit	Upper Limit		Calibration Uncertainty
2. Harmonic	%	0.0030	0.0031	*
3. Harmonic	%	0.0030	0.0008	*

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第9页, 共17页 (Page 9 of 17)

Channel Type:DELTATRON ZX 2693Channel No:3

All measurements made non floating on input and output. Transducer sensitivity : 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used.

Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level					
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0997	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3153	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9972	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1535	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9791	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5525	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.5377	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.7015	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	997.1946	1.1514

注: 未经本实验室批准,不得部份复制此校正证书。 Note: This certificate can't be partly copied if not approved by the laboratory.

UNRESTRICTED

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第10页, 共17页 (Page 10 of 17)

Lowpass filters:

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain)

(LP 100 k results not valid with WH 3219 option)

	Lower Upper		Measured	Calibration	
Parameter	Unit	Limit	Limit	Value	Uncertainty
Nexus setting Frequency					
LP 0.1k HP 1 20 Hz	%	-1.14	1.16	-0.34	0.12
LP 0.1k HP 1 100 Hz	%	-14.89	-6.67	-10.97	0.42
LP 1 k HP 10 200 Hz	%	-1.14	1.16	-0.37	0.12
LP 1 k HP 10 1000 Hz	%	-14.89	-6.67	-11.67	0.42
LP 3 k HP 10 600 Hz	%	-1.14	1.16	-0.33	0.12
LP 3 k HP 10 3000 Hz	%	-14.89	-6.67	-10.84	0.42
LP 10 k HP 10 2000 Hz	%	-1.14	1.16	-0.45	0.12
LP 10 k HP 10 10000 Hz	%	-14.89	-6.67	-11.62	0.42
LP 22.4k HP 10 4480 Hz	%	-1.14	1.16	-0.47	0.12
LP 22.4k HP 10 22400 Hz	%	-14.89	-6.67	-11.08	0.42
LP 30 k HP 10 6000 Hz	%	-1.14	1.16	-0.40	0.12
LP 30 k HP 10 30000 Hz	%	-14.89	-6.67	-10.67	0.42
LP 100 k HP 10 20000 Hz	%	-1.14	1.16	-0.22	0.12
LP 100 k HP 10 60000 Hz	%	-4.50	4.71	1.28	0.47
LP 100 k HP 10 100000 Hz	%	-18.72	-2.28	-12.99	0.62

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第11页, 共17页(Page 11 of 17)

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

			Lower	Upper	Measured	Calibration
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	%	-14.89	-6.67	-1.48	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.16	*
HP 1	1.0 Hz	%	-14.89	-6.67	-10.11	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.64	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.56	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.55	0.12

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz

Input shorted.

Output bandwidth limited with external A filter.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty

A weighted	uV		2.00	1.79	*

注: 未经本实验室批准, 不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第12页, 共17页(Page 12 of 17)

Reference Generator:

Measure output level from internal generator.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	*

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

		Upper	Measured	Calibration
Parameter	Unit	Limit	Value	Uncertainty
		ی ور به مد بند اختیک		
2. Harmonic	%	0.0030	0.0024	*
3. Harmonic	%	0.0030	0.0007	*

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第13页, 共17页 (Page 13 of 17)

Channel Type:DELTATRON ZX 2693Channel No:4

All measurements made non floating on input and output. Transducer sensitivity : 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used.

Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level					
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0998	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3156	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9981	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1561	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9870	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5770	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.6130	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.9729	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	997.9912	1.1514

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第14页, 共17页 (Page 14 of 17)

Lowpass filters:

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain)

(LP 100 k results not valid with WH 3219 option)

		Lower	Upper	Measure	d Calibration
	Unit	Limit	Limit	Value	Uncertainty
Frequency	= = = <u>-</u> = = it to a proper a second a second				
20 Hz	%	-1.14	1.16	-0.28	0.12
100 Hz	%	-14.89	-6.6 7	-11.00	0.42
200 Hz	%	-1.14	1.16	-0.28	0.12
1000 Hz	%	-14.89	-6.6 7	-11.15	0.42
600 Hz	%	-1.14	1.16	-0.25	0.12
3000 Hz	%	-14.89	-6.6 7	-10.59	0.42
2000 Hz	%	-1.14	1.16	-0.34	0.12
10000 Hz	%	-14.89	-6.67	-10.89	0.42
4480 Hz	%	-1.14	1.16	-0.36	0.12
22400 Hz	%	-14.89	-6.67	-10.97	0.42
6000 Hz	%	-1.14	1.16	-0.30	0.12
30000 Hz	%	-14.89	-6.67	-10.64	0.42
20000 Hz	%	-1.14	1.16	-0.14	0.12
60000 Hz	%	-4.50	4.71	0.98	0.47
100000 Hz	%	-18.72	-2.28	-13.11	0.62
	100 Hz 200 Hz 1000 Hz 600 Hz 3000 Hz 2000 Hz 10000 Hz 4480 Hz 22400 Hz 6000 Hz 30000 Hz 60000 Hz	20 Hz % 100 Hz % 200 Hz % 200 Hz % 200 Hz % 1000 Hz % 1000 Hz % 3000 Hz % 2000 Hz % 3000 Hz % 10000 Hz % 2000 Hz % 30000 Hz % 6000 Hz % 30000 Hz % 60000 Hz % 60000 Hz %	UnitLimitFrequency%-1.14100 Hz%-14.89200 Hz%-1.141000 Hz%-1.141000 Hz%-14.89600 Hz%-1.143000 Hz%-1.1410000 Hz%-1.1410000 Hz%-1.142000 Hz%-1.1430000 Hz%-1.142000 Hz%-1.1420000 Hz%-1.1430000 Hz%-1.1430000 Hz%-1.1430000 Hz%-1.1460000 Hz%-1.14	Unit Limit Limit Srequency % -1.14 1.16 100 Hz % -14.89 -6.67 200 Hz % -1.14 1.16 100 Hz % -1.14 1.16 1000 Hz % -1.14 1.16 1000 Hz % -1.14 1.16 1000 Hz % -1.14 1.16 3000 Hz % -1.14 1.16 3000 Hz % -14.89 -6.67 2000 Hz % -1.14 1.16 10000 Hz % -1.14 1.16 22400 Hz % -1.14 1.16 22400 Hz % -1.14 1.16 30000 Hz % -1.14 1.16 60000 Hz % -1.14 1.16 </td <td>Unit Limit Limit Value Frequency 20 Hz % -1.14 1.16 -0.28 100 Hz % -14.89 -6.67 -11.00 200 Hz % -1.14 1.16 -0.28 1000 Hz % -14.89 -6.67 -11.00 200 Hz % -1.14 1.16 -0.28 1000 Hz % -14.89 -6.67 -11.15 600 Hz % -1.14 1.16 -0.25 3000 Hz % -14.89 -6.67 -10.59 2000 Hz % -1.14 1.16 -0.34 10000 Hz % -14.89 -6.67 -10.89 4480 Hz % -1.14 1.16 -0.36 22400 Hz % -14.89 -6.67 -10.97 6000 Hz % -1.14 1.16 -0.30 30000 Hz % -14.89 -6.67 -10.64 20000 Hz %</td>	Unit Limit Limit Value Frequency 20 Hz % -1.14 1.16 -0.28 100 Hz % -14.89 -6.67 -11.00 200 Hz % -1.14 1.16 -0.28 1000 Hz % -14.89 -6.67 -11.00 200 Hz % -1.14 1.16 -0.28 1000 Hz % -14.89 -6.67 -11.15 600 Hz % -1.14 1.16 -0.25 3000 Hz % -14.89 -6.67 -10.59 2000 Hz % -1.14 1.16 -0.34 10000 Hz % -14.89 -6.67 -10.89 4480 Hz % -1.14 1.16 -0.36 22400 Hz % -14.89 -6.67 -10.97 6000 Hz % -1.14 1.16 -0.30 30000 Hz % -14.89 -6.67 -10.64 20000 Hz %

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第15页, 共17页(Page 15 of 17)

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

			Lower	Upper	Measured	Calibration
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	%	-14.89	-6.67	-2.21	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.27	*
HP 1	1.0 Hz	%	-14.89	-6.6 7	-2.43	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.59	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.63	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.49	0.12

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz

Input shorted.

Output bandwidth limited with external A filter.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
			-		
A weighted	uV		2.00	1.86	*

注: 未经本实验室批准,不得部份复制此校正证书。 Note: This certificate can't be partly copied if not approved by the laboratory.

UNRESTRICTED

*

校正結果(續頁)

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第16页, 共17页(Page 16 of 17)

Reference Generator:

Measure output level from internal generator.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	*

Distortion: Generator signal: 127 dBuV (2.24 Volt), 1 kHz Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz Basetone is rejected with a notchfilter. Output of the notch filter is digitized with the HP3458A DMM, and 2. harmonic and 3. harmonic is determined with a DFT. Upper Measured Calibration Parameter Unit Limit Value Uncertainty

2. Harmonic		%	0.0030	0.0021	*		
3. Harmonic		%	0.0030	0.0010	*		

•

校正結果(續頁)

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第17页, 共17页(Page 17 of 17)

說明 Explanation

1. 根據校正規範的相關技術要求 · 所有參數的校正結論見校正結果首頁概要. According to the technical requests of the calibration procedure, please check the summary on the first page of the calibration result to get the conclusion of this calibration.

2. 以星號(*)標稱的校正數據再我們申請的認可校正能力範圍之外·為保證校正結果的完整性· 這部分校正數據也包含在校正證書內.

Results marked by asterisk (*) are outside our scope of accreditation. The measurements are included for completeness.

3. 以上校正結果中的不確定度分析的包含概率均為 95% (k=2).

The confidence probability of uncertainty analysis of the calibration result is 95% (k=2).

4. 校正參數的不確定度見具體校正結果,參考參數的擴展不確定度見下:

The individual calibration parameter's measurement uncertainty please check the detail calibration result, the main parameters' uncertainties as below:

測量範圍	(0.1V~1KV)	U=0.03%,	<i>k</i> =2
Range of Measurement			
測量範圍	(100uA~1A)	U = 0.02%,	<i>k</i> =2
Range of Measurement			
測量範圍	(01V-700V)	U = 0.029/	<i>k</i> =2
	(0.1%~/00%)	0 = 0.0370,	<i>n</i> -2
Range of Measurement			
测导流画		11 0.010/	1.0
測重軋風	(100uA~1A)	U = 0.01%,	<i>k</i> =2
Range of Measurement			
油雪欲雨	(10,10)(0)	XI 0.010/	
測重配圖	$(1\Omega \sim 10M \Omega)$	U = 0.01%,	<i>k</i> =2
Range of Measurement			
	Range of Measurement 測量範圍 Range of Measurement 測量範圍 Range of Measurement 測量範圍 Range of Measurement 測量範圍	Range of Measurement 測量範圍 (100uA~1A) Range of Measurement 測量範圍 (0.1V~700V) Range of Measurement 測量範圍 (100uA~1A) Range of Measurement 測量範圍 (100uA~1A) Range of Measurement	Range of Measurement 測量範圍 (100uA~1A) $U = 0.02\%$, Range of Measurement 測量範圍 (0.1V~700V) $U = 0.03\%$, Range of Measurement 測量範圍 (100uA~1A) $U = 0.01\%$, Range of Measurement 測量範圍 (100uA~1A) $U = 0.01\%$, Range of Measurement

注: 未经本实验室批准,不得部份复制此校正证书。 Note: This certificate can't be partly copied if not approved by the laboratory.